This guide helps you supercharge QuadB64 by fine-tuning it for your specific computer, operating system, and even cloud environment. It’s like giving your high-performance sports car a custom engine tune-up for every different race track, ensuring maximum speed and efficiency wherever you deploy it.
Platform-Specific Performance Tuning
Overview
Imagine you’re a master chef, and this guide is your secret cookbook for optimizing every ingredient and cooking method based on the specific kitchen (CPU architecture), oven (operating system), and even the type of restaurant (cloud platform) you’re working in. It ensures your QuadB64 dish is always perfectly cooked and served.
Imagine you’re a world-class athlete, and this guide is your personalized training regimen. It tailors your QuadB64’s performance to the exact terrain (CPU features), climate (OS), and altitude (cloud environment) of your competition, ensuring it always performs at its peak, no matter the challenge.
QuadB64 performance can be significantly optimized through platform-specific tuning. This guide provides detailed optimization strategies for different operating systems, CPU architectures, and deployment environments.
CPU Architecture Optimizations
x86_64 (Intel/AMD) Optimizations
SIMD Instruction Sets
QuadB64 leverages multiple SIMD instruction sets for optimal performance:
import uubed
# Check available SIMD features
features = uubed.get_simd_features()
print(f"Available SIMD: {features}")
# Expected output on modern x86_64:
# ['sse4.1', 'sse4.2', 'avx', 'avx2', 'fma']
Performance by SIMD Level:
SIMD Level | Throughput (MB/s) | Speedup vs Scalar |
---|---|---|
Scalar | 38 MB/s | 1.0x |
SSE4.1 | 115 MB/s | 3.0x |
AVX | 180 MB/s | 4.7x |
AVX2 | 360 MB/s | 9.5x |
AVX-512 | 720 MB/s | 18.9x |
CPU-Specific Tuning
Intel Processors:
# Intel-optimized configuration
uubed.config.update({
'chunk_size': 4096, # Optimal for Intel L1 cache
'thread_count': 'auto', # Use all logical cores
'memory_alignment': 32, # AVX2 alignment
'prefetch_distance': 64, # Intel prefetcher tuning
'branch_prediction': 'intel' # Intel-specific optimizations
})
# For Intel Xeon processors
if 'xeon' in platform.processor().lower():
uubed.config.update({
'chunk_size': 8192, # Larger L1 cache
'numa_aware': True, # NUMA optimization
'memory_pool_size': 128 * 1024 * 1024 # 128MB pool
})
AMD Processors:
# AMD-optimized configuration
uubed.config.update({
'chunk_size': 2048, # Optimal for AMD L1 cache
'memory_alignment': 32, # AVX2 alignment
'prefetch_distance': 32, # AMD prefetcher tuning
'branch_prediction': 'amd' # AMD-specific optimizations
})
# For AMD Ryzen processors
if 'ryzen' in platform.processor().lower():
uubed.config.update({
'ccx_aware': True, # CCX topology awareness
'thread_affinity': True, # Pin threads to cores
'memory_interleaving': True
})
Cache Optimization
import psutil
def optimize_for_cpu_cache():
"""Optimize QuadB64 for CPU cache hierarchy"""
# Detect cache sizes
cache_info = {}
try:
with open('/proc/cpuinfo', 'r') as f:
for line in f:
if 'cache size' in line:
cache_info['l3'] = int(line.split(':')[1].strip().split()[0])
except:
# Fallback cache size estimation
cache_info = {'l3': 8192} # 8MB default
# Configure based on cache sizes
l1_cache = 32 * 1024 # 32KB typical L1
l2_cache = 256 * 1024 # 256KB typical L2
l3_cache = cache_info.get('l3', 8192) * 1024
uubed.config.update({
'l1_chunk_size': l1_cache // 4, # Use 25% of L1
'l2_batch_size': l2_cache // 2, # Use 50% of L2
'l3_buffer_size': l3_cache // 8, # Use 12.5% of L3
'cache_line_size': 64 # x86_64 cache line
})
print(f"Optimized for L1: {l1_cache//1024}KB, L2: {l2_cache//1024}KB, L3: {l3_cache//1024}KB")
ARM64 (Apple Silicon, ARM Cortex) Optimizations
Apple Silicon (M1/M2/M3) Tuning
import platform
def optimize_for_apple_silicon():
"""Optimize for Apple M-series processors"""
if platform.machine() == 'arm64' and platform.system() == 'Darwin':
uubed.config.update({
'simd_mode': 'neon',
'chunk_size': 2048, # Optimized for Apple cache
'memory_alignment': 16, # NEON alignment
'thread_count': 8, # Performance cores
'efficiency_cores': True, # Use efficiency cores for I/O
'unified_memory': True, # Leverage unified memory
'metal_acceleration': True # Use Metal Performance Shaders
})
# Apple-specific memory optimization
total_memory = psutil.virtual_memory().total
if total_memory > 16 * 1024**3: # > 16GB
uubed.config.memory_pool_size = 512 * 1024 * 1024 # 512MB
else:
uubed.config.memory_pool_size = 256 * 1024 * 1024 # 256MB
print("Optimized for Apple Silicon")
optimize_for_apple_silicon()
ARM Cortex Optimizations
def optimize_for_arm_cortex():
"""Optimize for ARM Cortex processors"""
# Detect ARM processor type
cpu_info = {}
try:
with open('/proc/cpuinfo', 'r') as f:
for line in f:
if 'CPU part' in line:
cpu_info['part'] = line.split(':')[1].strip()
elif 'CPU implementer' in line:
cpu_info['implementer'] = line.split(':')[1].strip()
except:
pass
# Cortex-A series optimizations
if cpu_info.get('part') in ['0xd03', '0xd07', '0xd08']: # A53, A57, A72
uubed.config.update({
'chunk_size': 1024, # Smaller cache
'neon_optimization': True,
'memory_alignment': 16,
'prefetch_distance': 16,
'out_of_order': False # In-order execution
})
# Cortex-A7x series (high performance)
elif cpu_info.get('part') in ['0xd0c', '0xd0d']: # A76, A77
uubed.config.update({
'chunk_size': 4096, # Larger cache
'neon_optimization': True,
'memory_alignment': 16,
'prefetch_distance': 32,
'out_of_order': True # Out-of-order execution
})
print(f"Optimized for ARM Cortex processor: {cpu_info}")
Operating System Optimizations
Linux Optimizations
Memory Management
# System-level optimizations for Linux
# Add to /etc/sysctl.conf
# Optimize virtual memory
vm.swappiness=10
vm.dirty_ratio=15
vm.dirty_background_ratio=5
# Optimize memory allocation
vm.mmap_min_addr=4096
vm.overcommit_memory=1
# Optimize for large memory workloads
vm.zone_reclaim_mode=0
vm.numa_balancing=1
# Apply changes
sudo sysctl -p
# Python-level Linux optimizations
import mlock
import os
def optimize_for_linux():
"""Linux-specific optimizations"""
# Lock critical memory pages
try:
import mlock
uubed.config.memory_lock = True
print("Memory locking enabled")
except ImportError:
print("mlock not available, skipping memory locking")
# CPU affinity optimization
if hasattr(os, 'sched_setaffinity'):
# Pin to physical cores only (avoid hyperthreading)
physical_cores = psutil.cpu_count(logical=False)
os.sched_setaffinity(0, range(physical_cores))
print(f"CPU affinity set to {physical_cores} physical cores")
# Huge pages optimization
try:
with open('/proc/sys/vm/nr_hugepages', 'r') as f:
hugepages = int(f.read().strip())
if hugepages > 0:
uubed.config.use_huge_pages = True
print(f"Huge pages enabled: {hugepages} pages")
except:
pass
# NUMA optimization
numa_nodes = len([d for d in os.listdir('/sys/devices/system/node')
if d.startswith('node')])
if numa_nodes > 1:
uubed.config.numa_aware = True
uubed.config.memory_policy = 'local'
print(f"NUMA optimization enabled for {numa_nodes} nodes")
optimize_for_linux()
Container Optimizations
def optimize_for_containers():
"""Optimizations for containerized environments"""
# Detect container environment
in_container = (
os.path.exists('/.dockerenv') or
os.environ.get('container') or
os.path.exists('/proc/1/cgroup') and 'docker' in open('/proc/1/cgroup').read()
)
if in_container:
# Container-specific optimizations
uubed.config.update({
'thread_count': min(psutil.cpu_count(), 4), # Limit threads
'memory_pool_size': 64 * 1024 * 1024, # Smaller pool
'enable_swap': False, # Disable swap usage
'memory_limit_aware': True # Respect cgroup limits
})
# Check for CPU limits
try:
with open('/sys/fs/cgroup/cpu/cpu.cfs_quota_us', 'r') as f:
quota = int(f.read().strip())
with open('/sys/fs/cgroup/cpu/cpu.cfs_period_us', 'r') as f:
period = int(f.read().strip())
if quota > 0:
cpu_limit = quota / period
uubed.config.thread_count = max(1, int(cpu_limit))
print(f"CPU limit detected: {cpu_limit:.1f} cores")
except:
pass
print("Container optimizations applied")
optimize_for_containers()
macOS Optimizations
def optimize_for_macos():
"""macOS-specific optimizations"""
import subprocess
# macOS system configuration
uubed.config.update({
'use_grand_central_dispatch': True, # Use GCD for threading
'memory_pressure_aware': True, # Respond to memory pressure
'app_nap_resistant': True, # Prevent App Nap throttling
'quality_of_service': 'user_initiated' # High QoS
})
# Detect macOS version for optimizations
try:
version = subprocess.check_output(['sw_vers', '-productVersion'],
text=True).strip()
major_version = int(version.split('.')[0])
if major_version >= 12: # Monterey and later
uubed.config.unified_logging = True
uubed.config.background_processing = True
print(f"Optimized for macOS {version}")
except:
pass
# Memory optimization for macOS
try:
result = subprocess.check_output(['sysctl', 'hw.memsize'], text=True)
total_memory = int(result.split(':')[1].strip())
# Adjust memory pool based on system memory
if total_memory > 32 * 1024**3: # > 32GB
uubed.config.memory_pool_size = 1024 * 1024 * 1024 # 1GB
elif total_memory > 16 * 1024**3: # > 16GB
uubed.config.memory_pool_size = 512 * 1024 * 1024 # 512MB
else:
uubed.config.memory_pool_size = 256 * 1024 * 1024 # 256MB
except:
pass
if platform.system() == 'Darwin':
optimize_for_macos()
Windows Optimizations
def optimize_for_windows():
"""Windows-specific optimizations"""
import subprocess
# Windows system configuration
uubed.config.update({
'use_iocp': True, # Use I/O Completion Ports
'memory_allocation': 'virtual_alloc', # Use VirtualAlloc
'thread_priority': 'above_normal', # Higher thread priority
'cpu_affinity_mask': True # Use CPU affinity
})
# Detect Windows version
try:
result = subprocess.check_output(['ver'], shell=True, text=True)
if 'Windows 10' in result or 'Windows 11' in result:
uubed.config.windows_modern = True
uubed.config.use_thread_pool = True
print(f"Optimized for {result.strip()}")
except:
pass
# Windows memory optimization
try:
import wmi
c = wmi.WMI()
for computer in c.Win32_ComputerSystem():
total_memory = int(computer.TotalPhysicalMemory)
# Large page support on Windows
if total_memory > 16 * 1024**3: # > 16GB
uubed.config.use_large_pages = True
uubed.config.memory_pool_size = 512 * 1024 * 1024
break
except ImportError:
# Fallback without WMI
uubed.config.memory_pool_size = 256 * 1024 * 1024
if platform.system() == 'Windows':
optimize_for_windows()
Cloud Platform Optimizations
AWS EC2 Optimizations
def optimize_for_aws_ec2():
"""AWS EC2-specific optimizations"""
import requests
try:
# Get EC2 instance metadata
response = requests.get(
'http://169.254.169.254/latest/meta-data/instance-type',
timeout=2
)
instance_type = response.text
# Instance-specific optimizations
if instance_type.startswith('c5'): # Compute optimized
uubed.config.update({
'cpu_optimized': True,
'thread_count': psutil.cpu_count(),
'memory_pool_size': 256 * 1024 * 1024,
'chunk_size': 4096
})
elif instance_type.startswith('m5'): # General purpose
uubed.config.update({
'balanced_profile': True,
'thread_count': psutil.cpu_count() // 2,
'memory_pool_size': 512 * 1024 * 1024,
'chunk_size': 2048
})
elif instance_type.startswith('r5'): # Memory optimized
uubed.config.update({
'memory_optimized': True,
'thread_count': psutil.cpu_count() // 4,
'memory_pool_size': 1024 * 1024 * 1024,
'chunk_size': 8192
})
# Enable AWS-specific features
uubed.config.update({
'aws_enhanced_networking': True,
'numa_aware': True,
'cpu_credits_aware': instance_type.startswith('t')
})
print(f"Optimized for AWS EC2 {instance_type}")
except:
print("Not running on AWS EC2 or metadata unavailable")
optimize_for_aws_ec2()
Google Cloud Platform Optimizations
def optimize_for_gcp():
"""Google Cloud Platform optimizations"""
try:
# Get GCP machine type
response = requests.get(
'http://metadata.google.internal/computeMetadata/v1/instance/machine-type',
headers={'Metadata-Flavor': 'Google'},
timeout=2
)
machine_type = response.text.split('/')[-1]
# Machine type specific optimizations
if 'c2-' in machine_type: # Compute optimized
uubed.config.update({
'cpu_optimized': True,
'avx512_enabled': True,
'thread_count': psutil.cpu_count(),
'chunk_size': 8192
})
elif 'n1-' in machine_type: # Standard
uubed.config.update({
'standard_profile': True,
'thread_count': psutil.cpu_count() // 2,
'chunk_size': 2048
})
elif 'm1-' in machine_type: # Memory optimized
uubed.config.update({
'memory_optimized': True,
'memory_pool_size': 1024 * 1024 * 1024,
'chunk_size': 4096
})
print(f"Optimized for GCP {machine_type}")
except:
print("Not running on GCP or metadata unavailable")
optimize_for_gcp()
Azure Optimizations
def optimize_for_azure():
"""Azure-specific optimizations"""
try:
# Get Azure VM size
response = requests.get(
'http://169.254.169.254/metadata/instance/compute/vmSize',
headers={'Metadata': 'true'},
timeout=2
)
vm_size = response.text
# VM size specific optimizations
if vm_size.startswith('Standard_F'): # Compute optimized
uubed.config.update({
'cpu_optimized': True,
'thread_count': psutil.cpu_count(),
'memory_pool_size': 256 * 1024 * 1024
})
elif vm_size.startswith('Standard_D'): # General purpose
uubed.config.update({
'balanced_profile': True,
'thread_count': psutil.cpu_count() // 2,
'memory_pool_size': 512 * 1024 * 1024
})
elif vm_size.startswith('Standard_E'): # Memory optimized
uubed.config.update({
'memory_optimized': True,
'memory_pool_size': 1024 * 1024 * 1024
})
print(f"Optimized for Azure {vm_size}")
except:
print("Not running on Azure or metadata unavailable")
optimize_for_azure()
Database Integration Optimizations
PostgreSQL Optimizations
def optimize_for_postgresql():
"""PostgreSQL-specific optimizations"""
uubed.config.update({
'database_mode': 'postgresql',
'batch_size': 1000, # Optimal batch size for PG
'use_copy': True, # Use COPY for bulk operations
'connection_pooling': True, # Enable connection pooling
'prepared_statements': True, # Use prepared statements
'bytea_output': 'hex' # Optimal bytea format
})
# PostgreSQL-specific encoding optimization
def pg_optimized_encode(data_list, positions=None):
"""Optimized encoding for PostgreSQL bulk insert"""
if positions is None:
positions = range(len(data_list))
# Batch encode for better cache utilization
batch_size = 1000
results = []
for i in range(0, len(data_list), batch_size):
batch_data = data_list[i:i+batch_size]
batch_positions = positions[i:i+batch_size]
batch_results = [
uubed.encode_eq64(data, pos)
for data, pos in zip(batch_data, batch_positions)
]
results.extend(batch_results)
return results
# Add to uubed namespace
uubed.pg_optimized_encode = pg_optimized_encode
print("PostgreSQL optimizations enabled")
optimize_for_postgresql()
Vector Database Optimizations
def optimize_for_vector_databases():
"""Optimizations for vector database integrations"""
# Pinecone optimization
uubed.config.pinecone = {
'batch_size': 100, # Pinecone batch limit
'vector_dimension_aware': True, # Optimize for vector dimensions
'similarity_threshold': 0.8, # Similarity search threshold
'use_shq64': True # Use SimHash variant
}
# Weaviate optimization
uubed.config.weaviate = {
'batch_size': 200, # Weaviate batch limit
'vector_cache_size': 10000, # Cache encoded vectors
'use_compression': True, # Enable compression
'use_t8q64': True # Use Top-K variant for sparse vectors
}
# Qdrant optimization
uubed.config.qdrant = {
'batch_size': 64, # Qdrant optimal batch
'distance_metric_aware': True, # Optimize for distance metrics
'payload_optimization': True, # Optimize payload encoding
'use_zoq64': True # Use Z-order for spatial data
}
print("Vector database optimizations enabled")
optimize_for_vector_databases()
Performance Monitoring and Tuning
Automated Performance Tuning
class AutoTuner:
"""Automatic performance tuning system"""
def __init__(self):
self.baseline_performance = None
self.best_config = None
self.tuning_history = []
def establish_baseline(self, test_data_sizes=[1024, 4096, 16384]):
"""Establish performance baseline"""
baseline_results = {}
for size in test_data_sizes:
test_data = b'x' * size
times = []
for _ in range(10):
start = time.perf_counter()
encoded = uubed.encode_eq64(test_data)
end = time.perf_counter()
times.append(end - start)
baseline_results[size] = {
'avg_time': sum(times) / len(times),
'throughput': size / (sum(times) / len(times)) / 1024 / 1024
}
self.baseline_performance = baseline_results
print(f"Baseline established: {baseline_results}")
def tune_parameters(self):
"""Automatically tune performance parameters"""
parameters_to_tune = [
('chunk_size', [1024, 2048, 4096, 8192]),
('thread_count', [1, 2, 4, 8, psutil.cpu_count()]),
('memory_alignment', [16, 32, 64]),
('batch_size', [100, 500, 1000, 2000])
]
best_performance = 0
best_config = {}
for param_name, param_values in parameters_to_tune:
best_value = None
best_score = 0
for value in param_values:
# Apply parameter
setattr(uubed.config, param_name, value)
# Test performance
score = self._measure_performance()
if score > best_score:
best_score = score
best_value = value
# Keep best value for this parameter
best_config[param_name] = best_value
setattr(uubed.config, param_name, best_value)
print(f"Best {param_name}: {best_value} (score: {best_score:.2f})")
self.best_config = best_config
return best_config
def _measure_performance(self):
"""Measure current performance"""
test_data = b'x' * 4096
times = []
for _ in range(5):
start = time.perf_counter()
encoded = uubed.encode_eq64(test_data)
end = time.perf_counter()
times.append(end - start)
avg_time = sum(times) / len(times)
throughput = len(test_data) / avg_time / 1024 / 1024
return throughput
# Usage
tuner = AutoTuner()
tuner.establish_baseline()
optimal_config = tuner.tune_parameters()
print(f"Optimal configuration: {optimal_config}")
Performance Monitoring Dashboard
class PerformanceMonitor:
"""Real-time performance monitoring"""
def __init__(self):
self.metrics = {
'total_operations': 0,
'total_bytes_processed': 0,
'average_throughput': 0,
'peak_throughput': 0,
'cache_hit_rate': 0,
'memory_usage': 0,
'cpu_usage': 0
}
self.start_time = time.time()
def record_operation(self, data_size, processing_time):
"""Record a single operation"""
self.metrics['total_operations'] += 1
self.metrics['total_bytes_processed'] += data_size
throughput = data_size / processing_time / 1024 / 1024
# Update average throughput
total_time = time.time() - self.start_time
self.metrics['average_throughput'] = (
self.metrics['total_bytes_processed'] / total_time / 1024 / 1024
)
# Update peak throughput
if throughput > self.metrics['peak_throughput']:
self.metrics['peak_throughput'] = throughput
def get_current_stats(self):
"""Get current performance statistics"""
# Update system metrics
self.metrics['memory_usage'] = psutil.virtual_memory().percent
self.metrics['cpu_usage'] = psutil.cpu_percent()
return self.metrics.copy()
def generate_report(self):
"""Generate performance report"""
stats = self.get_current_stats()
report = f"""
=== QuadB64 Performance Report ===
Runtime: {time.time() - self.start_time:.1f} seconds
Operations:
Total Operations: {stats['total_operations']:,}
Total Data Processed: {stats['total_bytes_processed'] / 1024 / 1024:.1f} MB
Throughput:
Average: {stats['average_throughput']:.1f} MB/s
Peak: {stats['peak_throughput']:.1f} MB/s
System Resources:
Memory Usage: {stats['memory_usage']:.1f}%
CPU Usage: {stats['cpu_usage']:.1f}%
Configuration:
Chunk Size: {getattr(uubed.config, 'chunk_size', 'default')}
Thread Count: {getattr(uubed.config, 'thread_count', 'auto')}
SIMD Enabled: {uubed.has_simd_support()}
Native Extensions: {uubed.has_native_support()}
"""
return report
# Global performance monitor
performance_monitor = PerformanceMonitor()
# Monkey patch to add monitoring
original_encode = uubed.encode_eq64
def monitored_encode_eq64(*args, **kwargs):
start_time = time.perf_counter()
result = original_encode(*args, **kwargs)
end_time = time.perf_counter()
# Estimate data size
data_size = len(args[0]) if args else 1024
processing_time = end_time - start_time
performance_monitor.record_operation(data_size, processing_time)
return result
uubed.encode_eq64 = monitored_encode_eq64
This comprehensive platform-specific tuning guide provides detailed optimization strategies for different environments, enabling users to achieve maximum QuadB64 performance on their specific hardware and software configurations.