This chapter is your deep dive into the secret sauce of QuadB64: how to customize it, squeeze every drop of performance out of it, and troubleshoot like a pro. It’s like getting the master key to the QuadB64 engine room, allowing you to fine-tune it for any mission, no matter how complex.

Advanced Features and Configuration

Overview

Imagine you’re a master watchmaker, and QuadB64 is a highly intricate timepiece. This chapter provides you with the specialized tools and knowledge to not just tell time, but to re-engineer its internal mechanisms, optimize its gears for specific environments, and diagnose any subtle malfunctions with precision.

Imagine you’re a seasoned pilot, and QuadB64 is your advanced aircraft. This chapter is your flight manual for extreme maneuvers, detailing how to push its performance envelope, navigate through turbulent conditions, and even customize its propulsion system for unique missions, ensuring a smooth and efficient flight every time.

This chapter covers sophisticated usage patterns, troubleshooting techniques, and advanced configuration options for power users and system integrators working with QuadB64 in complex environments.

Advanced Configuration

Custom Variant Creation

Beyond the standard QuadB64 variants (Eq64, Shq64, T8q64, Zoq64), you can create specialized variants for specific use cases:

from uubed.core import VariantBuilder, AlphabetGenerator, PositionFunction

class DomainSpecificVariant:
    """Create QuadB64 variants optimized for specific domains"""
    
    @staticmethod
    def create_genomic_variant():
        """Variant optimized for genomic data encoding"""
        
        def genomic_alphabet_generator(position: int) -> str:
            # Optimize for ATCG frequency in genomic data
            # Place nucleotide-like characters first
            base = "ATCGNatcgn0123456789BDEFHIJKLMOPQRSUVWXYZ+/bdefhijklmopqrsuvwxyz"
            
            # Rotate based on codon position (groups of 3)
            codon_position = (position // 3) % 3
            rotation = codon_position * 21  # Distribute across alphabet
            
            return base[rotation:] + base[:rotation]
        
        def genomic_position_function(position: int, context: dict = None) -> int:
            # Account for reading frame in genomic sequences
            reading_frame = context.get('reading_frame', 0) if context else 0
            return (position + reading_frame) % (2**24)
        
        return VariantBuilder.create_variant(
            name="Genomic64",
            alphabet_generator=genomic_alphabet_generator,
            position_function=genomic_position_function,
            metadata={
                'domain': 'genomics',
                'optimized_for': 'nucleotide_sequences',
                'reading_frame_aware': True
            }
        )
    
    @staticmethod 
    def create_financial_variant():
        """Variant optimized for financial data encoding"""
        
        def financial_alphabet_generator(position: int) -> str:
            # Prioritize numeric characters for financial data
            base = "0123456789.$+-ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz/"
            
            # Rotate based on decimal precision context
            precision_rotation = (position * 11) % 64
            return base[precision_rotation:] + base[:precision_rotation]
        
        def financial_position_function(position: int, context: dict = None) -> int:
            # Incorporate timestamp for temporal consistency
            timestamp = context.get('timestamp', 0) if context else 0
            time_factor = int(timestamp / 3600) % 1000  # Hour-based rotation
            return (position * 13 + time_factor) % (2**28)
        
        return VariantBuilder.create_variant(
            name="Financial64",
            alphabet_generator=financial_alphabet_generator,
            position_function=financial_position_function,
            metadata={
                'domain': 'finance',
                'temporal_consistency': True,
                'precision_optimized': True
            }
        )

# Usage example
genomic_encoder = DomainSpecificVariant.create_genomic_variant()
financial_encoder = DomainSpecificVariant.create_financial_variant()

# Encode genomic sequence with reading frame context
dna_sequence = b"ATCGATCGATCG" * 100
encoded_dna = genomic_encoder.encode(dna_sequence, context={'reading_frame': 1})

# Encode financial data with timestamp context
financial_data = b'{"price": 123.45, "volume": 10000}'
encoded_financial = financial_encoder.encode(
    financial_data, 
    context={'timestamp': time.time()}
)

Performance Tuning for Specific Use Cases

High-Throughput Streaming Configuration

class HighThroughputConfig:
    """Configuration optimized for high-throughput streaming scenarios"""
    
    def __init__(self):
        self.batch_size = 8192  # Optimal for network packets
        self.worker_threads = min(32, os.cpu_count() * 2)
        self.memory_pool_size = 64 * 1024 * 1024  # 64MB pool
        self.enable_compression = True
        self.cache_size = 100000
        
    def create_streaming_encoder(self):
        """Create encoder optimized for streaming"""
        
        encoder = StreamingEncoder(
            batch_size=self.batch_size,
            max_workers=self.worker_threads,
            memory_pool_size=self.memory_pool_size,
            cache_config={
                'max_size': self.cache_size,
                'ttl_seconds': 300,  # 5 minute TTL
                'eviction_policy': 'lru'
            }
        )
        
        # Enable hardware acceleration if available
        if self._has_simd_support():
            encoder.enable_simd_acceleration()
            
        return encoder
    
    def _has_simd_support(self) -> bool:
        """Detect available SIMD instruction sets"""
        try:
            import cpuinfo
            cpu_info = cpuinfo.get_cpu_info()
            return any(flag in cpu_info.get('flags', []) 
                      for flag in ['avx2', 'sse4_1', 'neon'])
        except ImportError:
            return False

class StreamingEncoder:
    """High-performance streaming encoder"""
    
    def __init__(self, batch_size=8192, max_workers=8, 
                 memory_pool_size=64*1024*1024, cache_config=None):
        
        self.batch_size = batch_size
        self.executor = ThreadPoolExecutor(max_workers=max_workers)
        self.memory_pool = MemoryPool(memory_pool_size)
        self.cache = LRUCache(**(cache_config or {}))
        self.statistics = StreamingStats()
        
        # Pre-allocate working buffers
        self.working_buffers = [
            self.memory_pool.get_buffer(batch_size * 2)
            for _ in range(max_workers)
        ]
        
    def encode_stream(self, data_stream, output_stream):
        """Encode data stream with optimal batching"""
        
        batch_buffer = bytearray()
        batch_count = 0
        
        try:
            for chunk in data_stream:
                batch_buffer.extend(chunk)
                
                # Process when batch is full
                if len(batch_buffer) >= self.batch_size:
                    self._process_batch(batch_buffer, output_stream, batch_count)
                    batch_buffer.clear()
                    batch_count += 1
            
            # Process remaining data
            if batch_buffer:
                self._process_batch(batch_buffer, output_stream, batch_count)
                
        finally:
            self.executor.shutdown(wait=True)
    
    def _process_batch(self, batch_data: bytearray, output_stream, batch_id: int):
        """Process a single batch with position-aware encoding"""
        
        # Calculate global position offset
        global_position = batch_id * self.batch_size
        
        # Submit to thread pool
        future = self.executor.submit(
            self._encode_batch_worker, 
            bytes(batch_data), 
            global_position
        )
        
        # Get result and write to output
        try:
            encoded_data = future.result(timeout=30.0)
            output_stream.write(encoded_data)
            output_stream.flush()
            
            self.statistics.record_batch(len(batch_data), len(encoded_data))
            
        except Exception as e:
            self.statistics.record_error(str(e))
            raise RuntimeError(f"Batch {batch_id} encoding failed: {e}")
    
    def _encode_batch_worker(self, data: bytes, position: int) -> bytes:
        """Worker function for batch encoding"""
        
        # Check cache first
        cache_key = (hash(data), position)
        cached_result = self.cache.get(cache_key)
        if cached_result:
            return cached_result
            
        # Encode with position context
        encoded = encode_eq64_with_position(data, position)
        
        # Cache result
        self.cache.put(cache_key, encoded)
        
        return encoded.encode('utf-8')

class StreamingStats:
    """Statistics collection for streaming operations"""
    
    def __init__(self):
        self.total_bytes_in = 0
        self.total_bytes_out = 0
        self.batch_count = 0
        self.error_count = 0
        self.start_time = time.time()
        self._lock = threading.Lock()
    
    def record_batch(self, bytes_in: int, bytes_out: int):
        with self._lock:
            self.total_bytes_in += bytes_in
            self.total_bytes_out += bytes_out
            self.batch_count += 1
    
    def record_error(self, error_msg: str):
        with self._lock:
            self.error_count += 1
    
    def get_stats(self) -> dict:
        with self._lock:
            elapsed = time.time() - self.start_time
            return {
                'total_input_mb': self.total_bytes_in / 1024 / 1024,
                'total_output_mb': self.total_bytes_out / 1024 / 1024,
                'compression_ratio': self.total_bytes_out / max(self.total_bytes_in, 1),
                'throughput_mb_s': (self.total_bytes_in / 1024 / 1024) / max(elapsed, 0.001),
                'batches_processed': self.batch_count,
                'error_rate': self.error_count / max(self.batch_count, 1),
                'elapsed_time': elapsed
            }

Low-Latency Configuration

class LowLatencyConfig:
    """Configuration optimized for low-latency scenarios"""
    
    def __init__(self):
        # Minimize context switching and memory allocation
        self.enable_pre_allocation = True
        self.disable_threading = True  # Single-threaded for consistency
        self.cache_warmup = True
        self.use_stack_buffers = True
        
    def create_low_latency_encoder(self):
        """Create encoder optimized for minimum latency"""
        
        encoder = LowLatencyEncoder()
        
        if self.cache_warmup:
            encoder.warmup_cache()
            
        return encoder

class LowLatencyEncoder:
    """Encoder optimized for minimal latency"""
    
    def __init__(self):
        # Pre-allocate all possible buffers
        self.buffer_cache = {}
        self.alphabet_cache = {}
        self.precomputed_tables = self._build_lookup_tables()
        
        # Pre-generate common alphabets
        for pos in range(1024):  # Cache first 1024 positions
            self.alphabet_cache[pos] = self._generate_alphabet(pos)
    
    def encode_minimal_latency(self, data: bytes, position: int = 0) -> str:
        """Encode with minimal latency - no dynamic allocation"""
        
        if len(data) == 0:
            return ""
            
        # Use stack-allocated buffer for small data
        if len(data) <= 1024:
            return self._encode_stack_buffer(data, position)
        else:
            return self._encode_pre_allocated(data, position)
    
    def _encode_stack_buffer(self, data: bytes, position: int) -> str:
        """Encode using stack-allocated buffer"""
        
        # Get pre-computed alphabet
        alphabet = self.alphabet_cache.get(position % 1024)
        if not alphabet:
            alphabet = self._generate_alphabet(position)
        
        # Direct encoding without memory allocation
        result_chars = []
        
        for i in range(0, len(data), 3):
            chunk = data[i:i+3]
            encoded_chunk = self._encode_chunk_direct(chunk, alphabet, position + i)
            result_chars.extend(encoded_chunk)
        
        return ''.join(result_chars)
    
    def _encode_chunk_direct(self, chunk: bytes, alphabet: str, position: int) -> list:
        """Direct chunk encoding without intermediate allocations"""
        
        # Pad chunk to 3 bytes
        while len(chunk) < 3:
            chunk += b'\x00'
        
        # Convert to 24-bit integer
        value = (chunk[0] << 16) | (chunk[1] << 8) | chunk[2]
        
        # Extract 6-bit groups using lookup table
        indices = [
            (value >> 18) & 0x3F,
            (value >> 12) & 0x3F,
            (value >> 6) & 0x3F,
            value & 0x3F
        ]
        
        # Apply position-dependent rotation
        rotation = (position // 3) % 64
        rotated_indices = [(idx + rotation) % 64 for idx in indices]
        
        # Map to alphabet characters
        return [alphabet[idx] for idx in rotated_indices]
    
    def warmup_cache(self):
        """Pre-compute common operations to minimize latency"""
        
        # Warm up with common data patterns
        test_patterns = [
            b'\x00' * 16,  # Null pattern
            b'\xFF' * 16,  # All ones
            bytes(range(16)),  # Sequential
            b'Hello, World!' * 2  # Text pattern
        ]
        
        for pattern in test_patterns:
            for pos in range(0, 64, 8):
                self.encode_minimal_latency(pattern, pos)

Integration with Exotic Platforms

Embedded Systems Integration

class EmbeddedSystemsConfig:
    """Configuration for resource-constrained embedded systems"""
    
    def __init__(self, memory_limit_kb=256, cpu_mhz=100):
        self.memory_limit = memory_limit_kb * 1024
        self.cpu_frequency = cpu_mhz * 1000000
        self.enable_power_saving = True
        self.use_lookup_tables = memory_limit_kb > 64  # Only if sufficient memory
        
    def create_embedded_encoder(self):
        """Create encoder suitable for embedded systems"""
        
        if self.memory_limit < 32 * 1024:  # Very constrained
            return MinimalEncoder(self.memory_limit)
        elif self.memory_limit < 128 * 1024:  # Moderately constrained  
            return CompactEncoder(self.memory_limit)
        else:  # Relatively unconstrained
            return OptimizedEmbeddedEncoder(self.memory_limit)

class MinimalEncoder:
    """Minimal encoder for severely memory-constrained environments"""
    
    def __init__(self, memory_limit: int):
        self.memory_limit = memory_limit
        # No caches or lookup tables - compute everything on-demand
        
    def encode(self, data: bytes, position: int = 0) -> str:
        """Encode with minimal memory footprint"""
        
        if len(data) == 0:
            return ""
        
        result = []
        
        # Process one character at a time to minimize memory usage
        for i in range(0, len(data), 3):
            chunk = data[i:min(i+3, len(data))]
            encoded = self._encode_chunk_minimal(chunk, position + i)
            result.append(encoded)
        
        return ''.join(result)
    
    def _encode_chunk_minimal(self, chunk: bytes, position: int) -> str:
        """Encode chunk with zero additional memory allocation"""
        
        # Generate alphabet on-demand (no caching)
        alphabet = self._generate_alphabet_minimal(position)
        
        # Pad chunk
        padded = chunk + b'\x00' * (3 - len(chunk))
        
        # Convert to integer and extract indices
        value = (padded[0] << 16) | (padded[1] << 8) | padded[2]
        
        # Extract and rotate indices
        rotation = (position // 3) % 64
        indices = [
            ((value >> 18) & 0x3F + rotation) % 64,
            ((value >> 12) & 0x3F + rotation) % 64,
            ((value >> 6) & 0x3F + rotation) % 64,
            ((value & 0x3F) + rotation) % 64
        ]
        
        # Build result directly
        return ''.join(alphabet[idx] for idx in indices[:len(chunk)+1])
    
    def _generate_alphabet_minimal(self, position: int) -> str:
        """Generate alphabet without caching"""
        base = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"
        rotation = (position // 3) % 64
        return base[rotation:] + base[:rotation]

GPU Acceleration Integration

try:
    import cupy as cp  # GPU acceleration with CuPy
    GPU_AVAILABLE = True
except ImportError:
    GPU_AVAILABLE = False

class GPUAcceleratedEncoder:
    """QuadB64 encoder with GPU acceleration for large datasets"""
    
    def __init__(self):
        if not GPU_AVAILABLE:
            raise RuntimeError("GPU acceleration requires CuPy")
        
        self.device = cp.cuda.Device()
        self.memory_pool = cp.get_default_memory_pool()
        self._compile_kernels()
    
    def _compile_kernels(self):
        """Compile CUDA kernels for QuadB64 operations"""
        
        # CUDA kernel for parallel encoding
        encode_kernel_code = """
        extern "C" __global__
        void quadb64_encode_kernel(
            const unsigned char* input,
            char* output,
            const char* alphabet,
            int* positions,
            int data_size,
            int chunk_size
        ) {
            int idx = blockIdx.x * blockDim.x + threadIdx.x;
            int chunk_start = idx * chunk_size;
            
            if (chunk_start >= data_size) return;
            
            // Process chunk
            int chunk_end = min(chunk_start + chunk_size, data_size);
            int position = positions[idx];
            
            // Generate position-dependent alphabet
            char local_alphabet[64];
            int rotation = (position / 3) % 64;
            
            for (int i = 0; i < 64; i++) {
                local_alphabet[i] = alphabet[(i + rotation) % 64];
            }
            
            // Encode chunk
            for (int i = chunk_start; i < chunk_end; i += 3) {
                // Get 3 bytes (pad with zeros if needed)
                unsigned int value = 0;
                for (int j = 0; j < 3 && i + j < data_size; j++) {
                    value |= (input[i + j] << (16 - 8 * j));
                }
                
                // Extract 6-bit groups
                int out_idx = (i / 3) * 4;
                output[out_idx + 0] = local_alphabet[(value >> 18) & 0x3F];
                output[out_idx + 1] = local_alphabet[(value >> 12) & 0x3F];
                output[out_idx + 2] = local_alphabet[(value >> 6) & 0x3F];
                output[out_idx + 3] = local_alphabet[value & 0x3F];
            }
        }
        """
        
        self.encode_kernel = cp.RawKernel(encode_kernel_code, 'quadb64_encode_kernel')
    
    def encode_gpu(self, data_list: list, positions: list = None) -> list:
        """Encode multiple data chunks on GPU"""
        
        if not positions:
            positions = list(range(len(data_list)))
        
        # Prepare GPU memory
        max_data_size = max(len(data) for data in data_list)
        max_output_size = ((max_data_size + 2) // 3) * 4
        
        # Allocate GPU memory
        gpu_input = cp.zeros(max_data_size, dtype=cp.uint8)
        gpu_output = cp.zeros(max_output_size, dtype=cp.int8)
        gpu_alphabet = cp.array(list("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"), dtype=cp.int8)
        
        results = []
        
        for i, (data, position) in enumerate(zip(data_list, positions)):
            # Copy data to GPU
            data_array = cp.array(list(data), dtype=cp.uint8)
            gpu_input[:len(data)] = data_array
            
            # Set up kernel parameters
            chunk_size = 192  # Process 192 bytes per thread (64 output chars)
            num_chunks = (len(data) + chunk_size - 1) // chunk_size
            
            positions_array = cp.array([position + i * chunk_size for i in range(num_chunks)], dtype=cp.int32)
            
            # Launch kernel
            threads_per_block = min(256, num_chunks)
            blocks = (num_chunks + threads_per_block - 1) // threads_per_block
            
            self.encode_kernel(
                (blocks,), (threads_per_block,),
                (gpu_input, gpu_output, gpu_alphabet, positions_array, len(data), chunk_size)
            )
            
            # Copy result back to CPU
            output_size = ((len(data) + 2) // 3) * 4
            result_bytes = cp.asnumpy(gpu_output[:output_size])
            result_str = ''.join(chr(b) for b in result_bytes if b != 0)
            results.append(result_str)
        
        return results

Troubleshooting Guide

Common Issues and Solutions

Issue 1: Performance Degradation

Symptoms:

  • Encoding speed significantly slower than expected
  • High CPU usage with low throughput
  • Memory usage growing over time

Diagnostic Steps:

class PerformanceDiagnostic:
    """Diagnostic tools for performance issues"""
    
    def diagnose_performance_issue(self, encoder, test_data: bytes):
        """Comprehensive performance diagnosis"""
        
        diagnostics = {
            'system_info': self._get_system_info(),
            'encoder_config': self._analyze_encoder_config(encoder),
            'memory_usage': self._analyze_memory_usage(),
            'cpu_utilization': self._analyze_cpu_usage(),
            'bottlenecks': self._identify_bottlenecks(encoder, test_data)
        }
        
        return self._generate_performance_report(diagnostics)
    
    def _identify_bottlenecks(self, encoder, test_data: bytes) -> dict:
        """Identify specific performance bottlenecks"""
        
        import time
        import tracemalloc
        
        bottlenecks = {}
        
        # Test different aspects
        test_scenarios = {
            'small_data': test_data[:100],
            'medium_data': test_data[:10000],
            'large_data': test_data,
            'repeated_small': test_data[:100] * 100
        }
        
        for scenario, data in test_scenarios.items():
            # Start memory tracking
            tracemalloc.start()
            start_time = time.perf_counter()
            
            # Run encoding
            try:
                result = encoder.encode(data)
                end_time = time.perf_counter()
                
                # Get memory stats
                current, peak = tracemalloc.get_traced_memory()
                tracemalloc.stop()
                
                bottlenecks[scenario] = {
                    'duration': end_time - start_time,
                    'throughput_mb_s': len(data) / (end_time - start_time) / 1024 / 1024,
                    'memory_current_mb': current / 1024 / 1024,
                    'memory_peak_mb': peak / 1024 / 1024,
                    'efficiency_score': len(result) / (end_time - start_time) / peak
                }
                
            except Exception as e:
                bottlenecks[scenario] = {'error': str(e)}
        
        return bottlenecks

# Usage
diagnostic = PerformanceDiagnostic()
test_data = b"sample data" * 10000
encoder = SomeQuadB64Encoder()

report = diagnostic.diagnose_performance_issue(encoder, test_data)
print(report)

Common Solutions:

  1. Enable Native Extensions:
    # Check if native extensions are loaded
    if not encoder.has_native_support():
        print("Installing native extensions...")
        install_native_extensions()
    
  2. Optimize Memory Pool Size:
    # Increase memory pool for large datasets
    encoder.configure_memory_pool(size_mb=128)
    
  3. Adjust Thread Pool Size:
    # Optimize for your CPU count
    optimal_workers = min(32, os.cpu_count() * 2)
    encoder.set_worker_count(optimal_workers)
    

Issue 2: Encoding Inconsistencies

Symptoms:

  • Different results for same input
  • Position-dependent variations unexpected
  • Decoding failures

Diagnostic Steps:

class ConsistencyDiagnostic:
    """Diagnostic tools for encoding consistency issues"""
    
    def test_encoding_consistency(self, encoder, test_cases: list):
        """Test encoding consistency across multiple runs"""
        
        results = {}
        
        for i, test_data in enumerate(test_cases):
            case_results = []
            
            # Run same encoding multiple times
            for run in range(5):
                try:
                    encoded = encoder.encode(test_data, position=0)
                    case_results.append(encoded)
                except Exception as e:
                    case_results.append(f"ERROR: {e}")
            
            # Check consistency
            unique_results = set(case_results)
            results[f"case_{i}"] = {
                'consistent': len(unique_results) == 1,
                'results': case_results,
                'unique_count': len(unique_results)
            }
        
        return results
    
    def test_position_consistency(self, encoder, data: bytes):
        """Test position-dependent behavior"""
        
        position_tests = {}
        
        for position in [0, 1, 2, 3, 63, 64, 65, 127, 128]:
            try:
                encoded = encoder.encode(data, position=position)
                decoded = encoder.decode(encoded, position=position)
                
                position_tests[position] = {
                    'encoded': encoded,
                    'roundtrip_success': decoded == data,
                    'encoded_length': len(encoded)
                }
            except Exception as e:
                position_tests[position] = {'error': str(e)}
        
        return position_tests

Solutions:

  1. Verify Position Parameter Usage:
    # Ensure consistent position usage
    position = calculate_global_position(chunk_index, chunk_size)
    encoded = encoder.encode(data, position=position)
    
  2. Check Thread Safety:
    # Use thread-safe encoder for concurrent access
    encoder = ThreadSafeEncoder(base_encoder)
    

Issue 3: Memory Leaks

Symptoms:

  • Memory usage continuously increasing
  • Out of memory errors in long-running processes
  • Slow garbage collection

Diagnostic Steps:

import gc
import tracemalloc
import weakref

class MemoryLeakDetector:
    """Detect and analyze memory leaks in QuadB64 operations"""
    
    def __init__(self):
        self.snapshots = []
        self.tracked_objects = []
    
    def start_tracking(self):
        """Start memory leak tracking"""
        tracemalloc.start()
        gc.collect()  # Clean start
        self.snapshots.append(tracemalloc.take_snapshot())
    
    def check_leaks(self, operation_name: str = ""):
        """Check for memory leaks since last snapshot"""
        gc.collect()  # Force garbage collection
        
        current_snapshot = tracemalloc.take_snapshot()
        self.snapshots.append(current_snapshot)
        
        if len(self.snapshots) >= 2:
            top_stats = current_snapshot.compare_to(
                self.snapshots[-2], 'lineno'
            )
            
            print(f"Memory diff for {operation_name}:")
            for stat in top_stats[:10]:
                print(stat)
    
    def track_object(self, obj):
        """Track specific object for garbage collection"""
        weak_ref = weakref.ref(obj, lambda x: print(f"Object {id(obj)} collected"))
        self.tracked_objects.append(weak_ref)

# Usage
leak_detector = MemoryLeakDetector()
encoder = SomeQuadB64Encoder()

leak_detector.start_tracking()

# Perform operations
for i in range(1000):
    data = b"test data" * 100
    encoded = encoder.encode(data)
    
    if i % 100 == 0:
        leak_detector.check_leaks(f"iteration_{i}")

Solutions:

  1. Proper Cache Management:
    # Configure cache with appropriate limits
    encoder.configure_cache(max_size=10000, ttl_seconds=300)
    
  2. Explicit Cleanup:
    # Periodically clean up resources
    if iteration_count % 1000 == 0:
        encoder.cleanup_caches()
        gc.collect()
    

Debugging Techniques

Enable Detailed Logging

import logging

# Configure QuadB64 logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger('uubed')

# Enable detailed operation logging
encoder.enable_debug_logging(logger)

# Add custom log handlers
handler = logging.StreamHandler()
formatter = logging.Formatter(
    '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
handler.setFormatter(formatter)
logger.addHandler(handler)

Step-by-Step Encoding Analysis

class StepByStepDebugger:
    """Debug QuadB64 encoding step by step"""
    
    def debug_encode(self, data: bytes, position: int = 0):
        """Debug encoding process step by step"""
        
        print(f"Debugging encoding of {len(data)} bytes at position {position}")
        print(f"Input data: {data[:50]}..." if len(data) > 50 else f"Input data: {data}")
        print()
        
        # Step 1: Alphabet generation
        alphabet = self._debug_alphabet_generation(position)
        
        # Step 2: Data chunking
        chunks = self._debug_data_chunking(data)
        
        # Step 3: Chunk encoding
        encoded_chunks = []
        for i, chunk in enumerate(chunks):
            chunk_position = position + i * 3
            encoded_chunk = self._debug_chunk_encoding(chunk, chunk_position, alphabet)
            encoded_chunks.append(encoded_chunk)
        
        # Step 4: Final assembly
        result = ''.join(encoded_chunks)
        print(f"Final result: {result}")
        
        return result
    
    def _debug_alphabet_generation(self, position: int) -> str:
        """Debug alphabet generation"""
        base_alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"
        rotation = (position // 3) % 64
        
        alphabet = base_alphabet[rotation:] + base_alphabet[:rotation]
        
        print(f"Alphabet generation:")
        print(f"  Position: {position}")
        print(f"  Rotation: {rotation}")
        print(f"  Base:     {base_alphabet}")
        print(f"  Rotated:  {alphabet}")
        print()
        
        return alphabet
    
    def _debug_data_chunking(self, data: bytes) -> list:
        """Debug data chunking process"""
        chunks = [data[i:i+3] for i in range(0, len(data), 3)]
        
        print(f"Data chunking:")
        print(f"  Total bytes: {len(data)}")
        print(f"  Chunks: {len(chunks)}")
        
        for i, chunk in enumerate(chunks[:5]):  # Show first 5 chunks
            print(f"  Chunk {i}: {chunk} ({[hex(b) for b in chunk]})")
        
        if len(chunks) > 5:
            print(f"  ... and {len(chunks) - 5} more chunks")
        print()
        
        return chunks
    
    def _debug_chunk_encoding(self, chunk: bytes, position: int, alphabet: str) -> str:
        """Debug individual chunk encoding"""
        # Pad chunk to 3 bytes
        padded_chunk = chunk + b'\x00' * (3 - len(chunk))
        
        # Convert to 24-bit integer
        value = (padded_chunk[0] << 16) | (padded_chunk[1] << 8) | padded_chunk[2]
        
        # Extract 6-bit indices
        indices = [
            (value >> 18) & 0x3F,
            (value >> 12) & 0x3F,
            (value >> 6) & 0x3F,
            value & 0x3F
        ]
        
        # Map to alphabet
        chars = [alphabet[idx] for idx in indices]
        result = ''.join(chars[:len(chunk)+1])
        
        print(f"Chunk encoding at position {position}:")
        print(f"  Input: {chunk} -> {[hex(b) for b in padded_chunk]}")
        print(f"  24-bit value: {value:024b} ({value})")
        print(f"  6-bit indices: {indices}")
        print(f"  Characters: {chars} -> '{result}'")
        print()
        
        return result

# Usage
debugger = StepByStepDebugger()
test_data = b"Hello, QuadB64!"
result = debugger.debug_encode(test_data, position=5)

This comprehensive advanced features guide provides power users with the tools and techniques needed to optimize QuadB64 for specific use cases, troubleshoot issues, and implement custom solutions for complex requirements.


Copyright © 2024 UUBED Project. Distributed under the MIT License.