E-commerce Applications
Discover how uubed encoding enhances e-commerce platforms through improved product recommendations, search, and personalization.
Overview
E-commerce platforms benefit from uubed in several key areas:
- Product Recommendations: Find similar products efficiently
- Search Enhancement: Improve product search with semantic understanding
- Customer Behavior Analysis: Encode user interaction patterns
- Inventory Management: Identify similar products for substitution
Implementation Examples
Product Similarity
from uubed import encode
import numpy as np
class ProductSimilarityEngine:
def __init__(self):
self.encoding_method = "shq64"
def encode_product(self, product):
# Create product embedding from features
features = self.extract_features(product)
return encode(features, method=self.encoding_method)
def extract_features(self, product):
# Combine various product attributes
features = []
# Category embedding (one-hot or learned)
features.extend(self.encode_category(product.category))
# Price tier (normalized)
features.append(self.normalize_price(product.price))
# Brand embedding
features.extend(self.encode_brand(product.brand))
# Description embedding (using NLP model)
desc_embedding = self.text_encoder.encode(product.description)
features.extend(desc_embedding)
return np.array(features, dtype=np.float32)
def find_similar_products(self, product_id, limit=10):
target_product = self.get_product(product_id)
target_encoding = self.encode_product(target_product)
similar_products = []
for product in self.product_catalog:
if product.id != product_id:
product_encoding = self.encode_product(product)
similarity = self.calculate_similarity(
target_encoding,
product_encoding
)
similar_products.append((product, similarity))
return sorted(similar_products, key=lambda x: x[1], reverse=True)[:limit]
Recommendation System
class RecommendationEngine:
def __init__(self):
self.user_encoder = UserBehaviorEncoder()
self.product_encoder = ProductEncoder()
def get_recommendations(self, user_id, num_recommendations=5):
# Encode user preferences
user_profile = self.build_user_profile(user_id)
user_encoding = encode(user_profile, method="t8q64", k=16)
# Find products matching user preferences
recommendations = []
for product in self.available_products:
product_encoding = self.product_encoder.encode(product)
# Calculate user-product compatibility
compatibility = self.calculate_compatibility(
user_encoding,
product_encoding
)
recommendations.append((product, compatibility))
# Filter and rank recommendations
top_recommendations = sorted(
recommendations,
key=lambda x: x[1],
reverse=True
)[:num_recommendations]
return [product for product, score in top_recommendations]
def build_user_profile(self, user_id):
# Aggregate user behavior data
user_data = self.get_user_data(user_id)
profile_features = []
# Purchase history
purchase_categories = self.analyze_purchase_categories(user_data.purchases)
profile_features.extend(purchase_categories)
# Browse behavior
browse_patterns = self.analyze_browse_patterns(user_data.page_views)
profile_features.extend(browse_patterns)
# Search queries
search_preferences = self.analyze_search_queries(user_data.searches)
profile_features.extend(search_preferences)
return np.array(profile_features, dtype=np.float32)
Search Enhancement
class EnhancedProductSearch:
def __init__(self):
self.text_encoder = SentenceTransformer('all-MiniLM-L6-v2')
self.product_embeddings = {}
def index_products(self, product_catalog):
"""Pre-encode all products for fast search."""
for product in product_catalog:
# Create searchable text from product
searchable_text = self.create_search_text(product)
# Generate and encode embedding
embedding = self.text_encoder.encode(searchable_text)
encoded = encode(embedding, method="eq64")
self.product_embeddings[product.id] = encoded
def search(self, query, limit=20):
# Encode search query
query_embedding = self.text_encoder.encode(query)
query_encoded = encode(query_embedding, method="eq64")
# Find matching products
matches = []
for product_id, product_encoding in self.product_embeddings.items():
similarity = self.calculate_similarity(query_encoded, product_encoding)
matches.append((product_id, similarity))
# Return top matches
top_matches = sorted(matches, key=lambda x: x[1], reverse=True)[:limit]
return [self.get_product(product_id) for product_id, _ in top_matches]
def create_search_text(self, product):
# Combine relevant product fields for search
components = [
product.name,
product.description,
product.category,
product.brand,
' '.join(product.tags)
]
return ' '.join(filter(None, components))
Advanced Use Cases
Dynamic Pricing
class DynamicPricingEngine:
def recommend_price(self, product_id):
product = self.get_product(product_id)
product_encoding = self.encode_product(product)
# Find similar products
similar_products = self.find_similar_products(product_encoding)
# Analyze pricing of similar products
price_recommendations = self.analyze_competitor_pricing(similar_products)
return price_recommendations
Inventory Substitution
class InventoryManager:
def find_substitutes(self, out_of_stock_product_id):
"""Find suitable product substitutes when items are out of stock."""
target_product = self.get_product(out_of_stock_product_id)
target_encoding = self.encode_product(target_product)
# Find products with high similarity
substitutes = []
for product in self.available_inventory:
if product.category == target_product.category:
product_encoding = self.encode_product(product)
similarity = self.calculate_similarity(
target_encoding,
product_encoding
)
if similarity > 0.8: # High similarity threshold
substitutes.append((product, similarity))
return sorted(substitutes, key=lambda x: x[1], reverse=True)
Customer Segmentation
class CustomerSegmentation:
def segment_customers(self, customer_base):
"""Segment customers based on encoded behavior patterns."""
customer_encodings = []
for customer in customer_base:
behavior_profile = self.build_behavior_profile(customer)
encoding = encode(behavior_profile, method="mq64")
customer_encodings.append((customer.id, encoding))
# Cluster customers based on encoded profiles
segments = self.cluster_encodings(customer_encodings)
return segments
def build_behavior_profile(self, customer):
# Create behavioral feature vector
features = []
# Purchase frequency
features.append(customer.purchase_frequency)
# Average order value
features.append(self.normalize_value(customer.avg_order_value))
# Category preferences
features.extend(customer.category_preferences)
# Seasonal patterns
features.extend(customer.seasonal_patterns)
return np.array(features, dtype=np.float32)
Integration Patterns
Real-time Recommendations
# Real-time recommendation API
from flask import Flask, jsonify, request
from uubed import encode
app = Flask(__name__)
@app.route('/recommendations/<user_id>')
def get_recommendations(user_id):
# Get user context
user_context = request.args.get('context', 'browse')
current_product = request.args.get('product_id')
# Generate recommendations
recommendations = recommendation_engine.get_recommendations(
user_id=user_id,
context=user_context,
current_product=current_product
)
return jsonify({
'user_id': user_id,
'recommendations': recommendations,
'context': user_context
})
Batch Processing
# Nightly batch processing for product encoding
from uubed.streaming import batch_encode
def update_product_encodings():
"""Update product encodings in batch for efficiency."""
products = get_all_products()
# Extract features for all products
product_features = [extract_features(product) for product in products]
# Batch encode all products
encoded_features = batch_encode(
product_features,
method="shq64",
batch_size=1000
)
# Update database
for product, encoding in zip(products, encoded_features):
update_product_encoding(product.id, encoding)
Performance Optimization
Caching Strategy
from redis import Redis
import json
class EncodingCache:
def __init__(self):
self.redis = Redis(host='localhost', port=6379, db=0)
self.ttl = 3600 # 1 hour TTL
def get_product_encoding(self, product_id):
cache_key = f"product_encoding:{product_id}"
cached = self.redis.get(cache_key)
if cached:
return cached.decode('utf-8')
# Generate encoding and cache it
product = get_product(product_id)
encoding = self.encode_product(product)
self.redis.setex(cache_key, self.ttl, encoding)
return encoding
Metrics and Analytics
A/B Testing
class RecommendationABTest:
def __init__(self):
self.control_method = "shq64"
self.test_method = "t8q64"
def get_recommendations_with_test(self, user_id):
# Determine test group
test_group = self.get_test_group(user_id)
encoding_method = (
self.test_method if test_group == 'B'
else self.control_method
)
recommendations = self.generate_recommendations(
user_id,
encoding_method
)
# Log for analysis
self.log_recommendation_event(
user_id,
test_group,
recommendations,
encoding_method
)
return recommendations
Best Practices
- Feature Engineering: Carefully design product and user feature representations
- Method Selection: Choose appropriate encoding methods for different use cases
- Caching: Cache frequently accessed encodings to improve response times
- Batch Processing: Update encodings in batches during off-peak hours
- A/B Testing: Test different encoding methods to optimize performance
- Monitoring: Track recommendation quality and system performance
Deployment Checklist
- Set up product feature extraction pipeline
- Implement user behavior encoding
- Create recommendation API endpoints
- Set up caching infrastructure
- Implement batch processing jobs
- Add monitoring and analytics
- Test recommendation quality
- Deploy A/B testing framework