Content Management System Integration

Learn how to integrate uubed encoding into content management systems for efficient content similarity and search.

Overview

Content Management Systems (CMS) can leverage uubed for:

  • Content Similarity: Find related articles and pages
  • Duplicate Detection: Identify duplicate or near-duplicate content
  • Content Search: Semantic search across large content repositories
  • Recommendation Systems: Suggest related content to users

Common CMS Integrations

WordPress

<?php
// WordPress plugin integration example
class UubedContentAnalyzer {
    public function encode_post_content($post_id) {
        $content = get_post_field('post_content', $post_id);
        $embedding = $this->extract_embedding($content);
        
        // Use Python subprocess to encode with uubed
        $encoded = $this->call_uubed_encode($embedding, 'shq64');
        
        // Store encoded representation as post meta
        update_post_meta($post_id, 'uubed_encoding', $encoded);
        
        return $encoded;
    }
    
    public function find_similar_posts($post_id, $limit = 5) {
        $target_encoding = get_post_meta($post_id, 'uubed_encoding', true);
        
        // Query posts with similar encodings
        $similar_posts = $this->similarity_search($target_encoding, $limit);
        
        return $similar_posts;
    }
}
?>

Drupal

<?php
// Drupal module implementation
function uubed_content_node_insert($node) {
    if ($node->getType() == 'article') {
        $content = $node->get('body')->value;
        $embedding = uubed_extract_embedding($content);
        $encoded = uubed_encode($embedding, 'eq64');
        
        // Store in custom field
        $node->set('field_uubed_encoding', $encoded);
        $node->save();
    }
}

function uubed_content_get_related($node_id, $count = 3) {
    $node = Node::load($node_id);
    $encoding = $node->get('field_uubed_encoding')->value;
    
    return uubed_similarity_search($encoding, $count);
}
?>

Django CMS

# Django models and views
from django.db import models
from uubed import encode, decode
import numpy as np

class ContentPage(models.Model):
    title = models.CharField(max_length=200)
    content = models.TextField()
    uubed_encoding = models.TextField(blank=True)
    
    def save(self, *args, **kwargs):
        if self.content:
            # Extract embedding from content
            embedding = self.extract_embedding()
            self.uubed_encoding = encode(embedding, method="shq64")
        super().save(*args, **kwargs)
    
    def extract_embedding(self):
        # Use your preferred embedding method (BERT, etc.)
        from sentence_transformers import SentenceTransformer
        model = SentenceTransformer('all-MiniLM-L6-v2')
        return model.encode(self.content)
    
    def find_similar(self, limit=5):
        # Find pages with similar encodings
        return ContentPage.objects.filter(
            # Custom similarity query based on encoded representations
        ).exclude(id=self.id)[:limit]

Implementation Patterns

Content Pipeline

# Content processing pipeline
class ContentProcessor:
    def __init__(self, encoding_method="shq64"):
        self.encoding_method = encoding_method
        self.embedder = SentenceTransformer('all-MiniLM-L6-v2')
    
    def process_content(self, content_item):
        # Extract text content
        text = self.extract_text(content_item)
        
        # Generate embedding
        embedding = self.embedder.encode(text)
        
        # Encode with uubed
        encoded = encode(embedding, method=self.encoding_method)
        
        # Store in content metadata
        content_item.metadata['uubed_encoding'] = encoded
        
        return content_item
    
    def batch_process(self, content_list):
        # Efficient batch processing
        texts = [self.extract_text(item) for item in content_list]
        embeddings = self.embedder.encode(texts)
        
        from uubed.streaming import batch_encode
        encoded_batch = batch_encode(embeddings, method=self.encoding_method)
        
        for item, encoded in zip(content_list, encoded_batch):
            item.metadata['uubed_encoding'] = encoded
        
        return content_list
# Content similarity service
class ContentSimilarityService:
    def __init__(self, content_repository):
        self.repository = content_repository
    
    def find_similar_content(self, target_content, similarity_threshold=0.8):
        target_encoding = target_content.metadata.get('uubed_encoding')
        if not target_encoding:
            return []
        
        similar_items = []
        for content in self.repository.all():
            content_encoding = content.metadata.get('uubed_encoding')
            if content_encoding and content != target_content:
                similarity = self.calculate_similarity(
                    target_encoding, 
                    content_encoding
                )
                if similarity >= similarity_threshold:
                    similar_items.append((content, similarity))
        
        # Sort by similarity score
        similar_items.sort(key=lambda x: x[1], reverse=True)
        return similar_items

Use Cases

Content Recommendation

# Recommend related articles
def get_content_recommendations(user_id, current_article_id):
    current_article = get_article(current_article_id)
    user_preferences = get_user_preferences(user_id)
    
    # Find similar content
    similar_articles = find_similar_content(
        current_article.uubed_encoding,
        limit=10
    )
    
    # Filter based on user preferences
    recommendations = filter_by_preferences(
        similar_articles, 
        user_preferences
    )
    
    return recommendations[:5]

Duplicate Detection

# Detect duplicate or near-duplicate content
def detect_duplicates(content_repository, similarity_threshold=0.95):
    duplicates = []
    
    for i, content_a in enumerate(content_repository):
        for content_b in content_repository[i+1:]:
            similarity = calculate_similarity(
                content_a.uubed_encoding,
                content_b.uubed_encoding
            )
            
            if similarity >= similarity_threshold:
                duplicates.append((content_a, content_b, similarity))
    
    return duplicates

Performance Optimization

Caching Strategy

# Implement caching for frequently accessed encodings
from django.core.cache import cache

class CachedEncodingService:
    def get_encoding(self, content_id):
        cache_key = f"uubed_encoding_{content_id}"
        encoding = cache.get(cache_key)
        
        if encoding is None:
            content = get_content(content_id)
            encoding = content.uubed_encoding
            cache.set(cache_key, encoding, timeout=3600)
        
        return encoding

Database Indexing

-- Create indexes for efficient similarity queries
CREATE INDEX idx_content_encoding ON content_pages(uubed_encoding);
CREATE INDEX idx_content_type_encoding ON content_pages(content_type, uubed_encoding);

Best Practices

  1. Batch Processing: Process content in batches for better performance
  2. Incremental Updates: Only re-encode content when it changes significantly
  3. Method Selection: Choose encoding method based on content type and use case
  4. Caching: Cache frequently accessed encodings to reduce computation
  5. Monitoring: Track encoding performance and similarity accuracy

Integration Checklist

  • Set up content embedding pipeline
  • Implement uubed encoding for new content
  • Create similarity search functionality
  • Add content recommendation features
  • Set up duplicate detection
  • Implement caching strategy
  • Monitor performance metrics

Copyright © 2024 UUBED Project. Distributed under the MIT License.