Model Database¶
Explore the world's most comprehensive database of 10,000+ LLM models from 40+ providers. Find the perfect model for your specific needs with advanced search and filtering capabilities.
Database Overview¶
-
:material-database-search:{ .lg .middle } Advanced Search
Search through 10,000+ models by capability, cost, performance, and more with powerful filters.
-
:material-brain:{ .lg .middle } Model Capabilities
Understand model capabilities from text generation to vision, coding, and reasoning.
-
:material-cash:{ .lg .middle } Pricing Database
Real-time pricing data and cost optimization tools to minimize your LLM expenses.
-
:material-table:{ .lg .middle } Full Database
Browse the complete model database with sortable tables and detailed information.
Database Statistics¶
Our comprehensive model database contains:
- 10,000+ Models across all major providers
- 40+ Providers from OpenAI to open-source platforms
- 25+ Capabilities tracked per model
- Real-time Pricing updated daily
- Performance Metrics from speed to quality ratings
- Context Windows from 2K to 2M+ tokens
Model Distribution by Provider¶
Provider Category | Model Count | Example Models |
---|---|---|
Premium | 2,500+ | GPT-4o, Claude 3.5, Gemini 1.5 |
Open Source | 4,200+ | Llama 3, Mistral, CodeLlama |
Specialized | 1,800+ | DeepSeek-Coder, Stable Code |
Fine-tuned | 1,500+ | Domain-specific variants |
Capability Distribution¶
pie title Model Capabilities
"Text Generation" : 10000
"Chat Completion" : 9500
"Code Generation" : 6200
"Function Calling" : 3800
"Vision/Multimodal" : 2100
"Reasoning" : 1600
"Embeddings" : 1200
"Image Generation" : 800
Quick Model Finder¶
Find by Use Case¶
Best Overall: GPT-4o, Claude 3.5 Sonnet, Gemini 1.5 Pro Budget: GPT-4o-mini, Claude 3 Haiku, Gemini 1.5 Flash Free: Llama 3.1 8B, Mistral 7B, Gemma 2 9B
Best: GPT-4o, Claude 3.5 Sonnet, DeepSeek Coder V2 Specialized: CodeLlama 70B, StarCoder2, Codestral Fast: DeepSeek Coder 6.7B, Code Llama 13B
Best: GPT-4o, Claude 3.5 Sonnet, Gemini 1.5 Pro Budget: GPT-4o-mini, Gemini 1.5 Flash Specialized: Llava 1.6, Idefics2
Find by Budget¶
Budget Range | Cost/1K Tokens | Recommended Models |
---|---|---|
Free | $0.0000 | Hugging Face models, Ollama |
Ultra Budget | \(0.0001-\)0.0005 | Groq models, DeepSeek |
Budget | \(0.0005-\)0.002 | GPT-4o-mini, Gemini Flash |
Standard | \(0.002-\)0.01 | Claude Haiku, Mistral models |
Premium | $0.01+ | GPT-4o, Claude Sonnet, o1 |
Model Search Examples¶
CLI Search¶
# Basic search
knollm models search --query "gpt-4"
# Advanced filtering
knollm models search \
--capability code_generation \
--capability function_calling \
--max-cost 0.01 \
--min-context 32000 \
--provider openai anthropic
# Find cheapest models
knollm models cheapest --capability vision --limit 5
# Compare specific models
knollm models compare gpt-4o-mini claude-3-haiku gemini-1.5-flash
Python API Search¶
from claif_knollm import ModelRegistry, SearchFilter, ModelCapability
from decimal import Decimal
registry = ModelRegistry()
# Complex search with multiple criteria
search_filter = SearchFilter(
query="coding assistant",
required_capabilities=[
ModelCapability.CODE_GENERATION,
ModelCapability.FUNCTION_CALLING
],
max_cost_per_1k_tokens=Decimal("0.005"),
min_context_window=32000,
providers=["openai", "anthropic", "mistral"],
active_only=True,
limit=10
)
results = registry.search_models(search_filter)
print(f"Found {len(results.models)} models:")
for model in results.models:
print(f" {model.id} ({model.provider}) - ${model.metrics.cost_per_1k_input_tokens}")
Model Quality Metrics¶
Performance Scoring¶
Each model is evaluated across multiple dimensions:
Metric | Description | Range | Weight |
---|---|---|---|
Quality | Overall response quality | 0.0-1.0 | 40% |
Speed | Tokens per second | Measured | 25% |
Cost | Price per 1K tokens | USD | 20% |
Reliability | Uptime & consistency | 0.0-1.0 | 10% |
Features | Capability breadth | Count | 5% |
Quality Ratings¶
- 🌟🌟🌟🌟🌟 Excellent (0.9-1.0) - Top-tier models like GPT-4o, Claude 3.5
- 🌟🌟🌟🌟 Very Good (0.8-0.89) - High-quality models like GPT-4o-mini
- 🌟🌟🌟 Good (0.7-0.79) - Solid performers like Llama 3.1 70B
- 🌟🌟 Fair (0.6-0.69) - Decent models like Mistral 7B
- 🌟 Basic (0.5-0.59) - Entry-level models
Cost Optimization Tools¶
Automatic Cost Optimization¶
from claif_knollm import ModelRegistry
registry = ModelRegistry()
# Find the cheapest model meeting your requirements
optimal_model = registry.find_optimal_model(
required_capabilities=[ModelCapability.CHAT_COMPLETION],
min_quality_score=0.8,
max_cost_per_1k_tokens=0.005
)
print(f"Optimal model: {optimal_model.id}")
print(f"Cost: ${optimal_model.metrics.cost_per_1k_input_tokens}")
print(f"Quality: {optimal_model.metrics.quality_score}")
Cost Comparison¶
# Compare costs across providers
cost_comparison = registry.compare_model_costs([
"gpt-4o-mini",
"claude-3-haiku",
"gemini-1.5-flash",
"llama-3.1-8b-instant"
])
for model, cost in cost_comparison.items():
print(f"{model}: ${cost}/1K tokens")
Real-Time Data¶
Live Updates¶
The model database is continuously updated with:
- Daily Price Updates - Latest pricing from all providers
- New Model Detection - Automatic discovery of new releases
- Performance Monitoring - Real-time speed and availability tracking
- Capability Analysis - Automated testing of model capabilities
Data Sources¶
Our data comes from:
- Official Provider APIs - Direct integration with provider endpoints
- Community Benchmarks - Crowd-sourced performance data
- Automated Testing - Regular capability and quality assessments
- Manual Curation - Expert review and validation
Advanced Features¶
Smart Recommendations¶
# Get personalized recommendations based on usage history
recommendations = registry.get_recommendations(
usage_history=user_requests,
preferences={"cost_weight": 0.6, "quality_weight": 0.4}
)
# Find similar models to one you like
similar_models = registry.find_similar_models(
"gpt-4o-mini",
similarity_threshold=0.8
)
Batch Analysis¶
# Analyze multiple models at once
models_to_analyze = ["gpt-4o", "claude-3-5-sonnet", "gemini-1.5-pro"]
analysis = registry.batch_analyze_models(
models_to_analyze,
criteria=["cost", "speed", "quality", "context_window"]
)
Getting Started¶
Ready to explore the model database?
- Search Models → - Find models with advanced filters
- Model Capabilities → - Understand what models can do
- Pricing Guide → - Optimize your costs
- Full Database → - Browse all available models
🚀 Quick Start
Try this in your Python environment:
from claif_knollm import ModelRegistry
registry = ModelRegistry()
cheap_models = registry.get_cheapest_models(limit=5)
for model in cheap_models:
print(f"{model.id}: ${model.metrics.cost_per_1k_input_tokens}")