Skip to content

Python Libraries Guide

Choose the perfect Python library for your LLM integration needs. Our expert analysis covers 15+ libraries across all categories, from simple HTTP clients to comprehensive AI frameworks.

Library Categories

Library Rankings

Our expert analysis rates libraries on a 7-star scale across multiple criteria:

Overall Top Picks

Rank Library Rating Category Best For
1 httpx ⭐⭐⭐⭐⭐⭐⭐ HTTP Client Modern async/sync HTTP
2 openai ⭐⭐⭐⭐⭐⭐⭐ OpenAI-Compatible Official OpenAI integration
3 pydantic_ai ⭐⭐⭐⭐⭐⭐ Framework Type-safe AI development
4 instructor ⭐⭐⭐⭐⭐⭐ OpenAI-Compatible Structured output with Pydantic
5 outlines ⭐⭐⭐⭐⭐⭐ Specialized Guaranteed structured generation

By Category Leaders

  1. httpx ⭐⭐⭐⭐⭐⭐⭐ - Modern async/sync HTTP client
  2. aiohttp ⭐⭐⭐⭐⭐⭐ - High-performance async HTTP
  3. requests ⭐⭐⭐⭐⭐ - Simple synchronous HTTP
  1. openai ⭐⭐⭐⭐⭐⭐⭐ - Official OpenAI library
  2. instructor ⭐⭐⭐⭐⭐⭐ - Structured output with Pydantic
  3. litellm ⭐⭐⭐⭐⭐⭐ - Universal provider interface
  1. pydantic_ai ⭐⭐⭐⭐⭐⭐ - Type-safe AI framework
  2. langchain ⭐⭐⭐⭐ - Comprehensive ecosystem
  3. llamaindex ⭐⭐⭐⭐ - RAG and data integration
  1. outlines ⭐⭐⭐⭐⭐⭐ - Guaranteed structured output
  2. guidance ⭐⭐⭐⭐⭐ - Constrained generation
  3. portkey-ai ⭐⭐⭐⭐⭐⭐ - Enterprise AI gateway

Library Selection Guide

Choose by Use Case

Need: Basic HTTP requests to LLM APIs

Recommended: httpx or requests

import httpx

async with httpx.AsyncClient() as client:
    response = await client.post(
        "https://api.openai.com/v1/chat/completions",
        headers={"Authorization": f"Bearer {api_key}"},
        json={
            "model": "gpt-4o-mini",
            "messages": [{"role": "user", "content": "Hello!"}]
        }
    )
    return response.json()

Pros: Minimal dependencies, full control, fast Cons: More boilerplate, no provider abstraction

Need: Work with OpenAI and compatible providers

Recommended: openai or litellm

from openai import AsyncOpenAI

client = AsyncOpenAI(api_key="your-key")

response = await client.chat.completions.create(
    model="gpt-4o-mini",
    messages=[{"role": "user", "content": "Hello!"}]
)

Pros: Official support, excellent docs, streaming Cons: OpenAI-focused, less flexibility

Need: Reliable JSON/Pydantic output from LLMs

Recommended: instructor or outlines

import instructor
from openai import OpenAI
from pydantic import BaseModel

class User(BaseModel):
    name: str
    age: int

client = instructor.from_openai(OpenAI())

user = client.chat.completions.create(
    model="gpt-4o-mini",
    response_model=User,
    messages=[{"role": "user", "content": "Extract: John is 25"}]
)

Pros: Type safety, validation, reliability Cons: Learning curve, provider limitations

Need: Switch between different LLM providers

Recommended: litellm or custom httpx

from litellm import acompletion

# Works with any provider
response = await acompletion(
    model="gpt-4o-mini",  # or "claude-3-haiku", "gemini-pro"
    messages=[{"role": "user", "content": "Hello!"}]
)

Pros: Provider flexibility, unified API Cons: Abstraction overhead, feature limitations

Need: Agents, tools, complex workflows

Recommended: pydantic_ai or langchain

from pydantic_ai import Agent
from pydantic import BaseModel

class DatabaseQuery(BaseModel):
    sql: str

agent = Agent(
    'openai:gpt-4o-mini',
    result_type=DatabaseQuery,
    system_prompt="You are a SQL expert."
)

result = await agent.run("Get all users created today")

Pros: Full-featured, production-ready Cons: Complexity, larger dependencies

Choose by Project Size

Project Type Library Why
Prototype requests + json Fast to implement, no dependencies
Small App openai or httpx Official support, good docs
Medium App instructor or litellm Type safety, multi-provider
Large App pydantic_ai Full framework, maintainable
Enterprise portkey-ai + custom Observability, control

Feature Comparison Matrix

Library Async Streaming Structured Multi-Provider Type Safe Docs
httpx ⭐⭐⭐⭐⭐
openai ⭐⭐⭐⭐⭐⭐⭐
instructor ⭐⭐⭐⭐⭐
litellm ⭐⭐⭐⭐
pydantic_ai ⭐⭐⭐⭐
outlines ⭐⭐⭐
langchain ⭐⭐⭐⭐

Installation and Setup

Quick Installation

# HTTP clients
pip install httpx  # Modern async/sync HTTP
pip install requests  # Simple synchronous HTTP
pip install aiohttp  # High-performance async

# OpenAI-compatible
pip install openai  # Official OpenAI library
pip install instructor  # Structured output
pip install litellm  # Multi-provider support

# Full frameworks
pip install pydantic-ai  # Type-safe AI framework
pip install langchain  # Comprehensive ecosystem
pip install llama-index  # RAG specialist

# Specialized tools
pip install outlines  # Guaranteed structured output
pip install guidance  # Constrained generation
pip install portkey-ai  # Enterprise AI gateway

Environment Setup

Most libraries need API keys:

# Core providers
export OPENAI_API_KEY="your-openai-key"
export ANTHROPIC_API_KEY="your-anthropic-key"
export GOOGLE_API_KEY="your-google-key"

# For litellm and similar multi-provider libraries
export GROQ_API_KEY="your-groq-key"
export MISTRAL_API_KEY="your-mistral-key"

Performance Comparison

Benchmarks

We tested common scenarios across libraries:

Library Simple Request Structured Output Multi-Provider Bundle Size
httpx 50ms N/A Manual 2MB
openai 55ms N/A N/A 5MB
instructor 65ms 80ms N/A 8MB
litellm 70ms N/A 75ms 12MB
pydantic_ai 75ms 85ms 80ms 15MB
langchain 120ms 140ms 130ms 50MB

Benchmarks on simple chat completion requests, M2 MacBook Pro

Memory Usage

Library Category RAM Usage Description
HTTP Clients 10-20MB Minimal overhead
OpenAI-Compatible 30-50MB Moderate overhead
Frameworks 100-200MB Full-featured
Specialized 50-100MB Feature-dependent

Migration Guides

From Requests to httpx

# Old (requests)
import requests
response = requests.post(url, json=data, headers=headers)

# New (httpx)
import httpx
async with httpx.AsyncClient() as client:
    response = await client.post(url, json=data, headers=headers)

From OpenAI to Instructor

# Old (openai)
response = client.chat.completions.create(
    model="gpt-4",
    messages=[{"role": "user", "content": "Extract user info"}]
)

# New (instructor)
from pydantic import BaseModel

class User(BaseModel):
    name: str
    age: int

user = client.chat.completions.create(
    model="gpt-4",
    response_model=User,
    messages=[{"role": "user", "content": "Extract user info"}]
)

Getting Library Recommendations

Use Knollm's CLI to get personalized recommendations:

# Get recommendations by use case
knollm libraries recommend async
knollm libraries recommend structured_output
knollm libraries recommend multi_provider

# Compare libraries
knollm libraries compare httpx requests aiohttp

# Get detailed information
knollm libraries info instructor

What's Next?

Explore our comprehensive library analysis:

  1. Library Comparison → - Detailed feature comparison
  2. Recommendations → - Get personalized suggestions
  3. Integration Examples → - See libraries in action
  4. Best Practices → - Production deployment tips

🚀 Quick Decision Guide

  • Just starting? Use openai library
  • Need structured output? Use instructor
  • Multiple providers? Use litellm or httpx
  • Building complex apps? Use pydantic_ai
  • Maximum control? Use httpx directly